
The Security Testing
Pyramid
Entwicklertag Karlsruhe - 10.06.2021https://github.com/andifalk/bookmark-service

1

https://github.com/andifalk/bookmark-service

About Me

2

Andreas Falk
Novatec Consulting (Germany)

 andreas.falk@novatec-gmbh.de
 @andifalk

https://twitter.com/andifalk

UI Tests

Service Tests

Unit Tests

The Testing Pyramid (by Mike Cohn)

3
https://www.mountaingoatsoftware.com/blog/the-forgotten-layer-of-the-test-automation-pyramid
https://martinfowler.com/articles/practical-test-pyramid.html

Number of Tests

Feedback

Slow

Fast

Effort

High

Low

https://www.mountaingoatsoftware.com/blog/the-forgotten-layer-of-the-test-automation-pyramid
https://martinfowler.com/articles/practical-test-pyramid.html

Workflow
Tests
(UI)

API / Service Layer
Business Rules
Functional Tests

Unit Tests / Component Test
(Programmer Tests)

The Testing Pyramid (Gregory / Crispin)

4 https://agiletester.ca/more-agile-testing-the-book

Number of Tests

Feedback

Slow

Fast

Effort

High

Low

Manual /
Explorative Tests

https://agiletester.ca/more-agile-testing-the-book/

What About Security?

5

Agile Testing Quadrants (Gregory / Crispin)

6 https://agiletester.ca/more-agile-testing-the-book

https://agiletester.ca/more-agile-testing-the-book

▪ Top 1: Injection
▪ Top 2: Broken Authentication
▪ Top 3: Sensitive Data Exposure
▪ Top 4: XML External Entities (XXE)
▪ Top 5: Broken Access Control
▪ Top 6: Security Misconfiguration
▪ Top 7: Cross-Site Scripting (XSS)
▪ Top 8: Insecure Deserialization
▪ Top 9: Using Components with Known Vulnerabilities
▪ Top 10: Insufficient Logging & Monitoring

OWASP Top 10 Web Application Security Risks

7 https://owasp.org/www-project-top-ten/2017

https://owasp.org/www-project-top-ten/2017/

Derive Tests from Security Requirements

8

Application Security
Verification Standard

Web Security
Testing Guide

https://owasp.org/www-project-application-security-verification-standard
https://owasp.org/www-project-web-security-testing-guide

Security
Requirements Security Tests

https://owasp.org/www-project-application-security-verification-standard
https://owasp.org/www-project-web-security-testing-guide

▪ V1: Architecture, Design and Threat Modeling
▪ V2: Authentication
▪ V3: Session Management
▪ V4: Access Control
▪ V5: Validation, Sanitization and Encoding
▪ V6: Stored Cryptography
▪ V7: Error Handling and Logging

Application Security Verification Standard (1)

9 https://github.com/OWASP/ASVS

https://github.com/OWASP/ASVS

▪ V8: Data Protection
▪ V9: Communications
▪ V10: Malicious Code
▪ V11: Business Logic
▪ V12: File and Resources
▪ V13: API and Web Service
▪ V14: Configuration

Application Security Verification Standard (2)

10 https://github.com/OWASP/ASVS

https://github.com/OWASP/ASVS

Unit-Test Layer

11

DAST

API/Service Security
Tests

Security Unit &
Component Tests

SAST

The Security-Testing Pyramid: Unit Test Layer

12
Number of Tests

Feedback

Slow

Fast

Effort

High

Low

Explorative
Security Tests

▪ Static Application
Security Testing (SAST)

▪ Static Code Analysis
▪ Using Components

With Known Vulnerabilities
▪ Dependency Check
▪ Container Image Scan

▪ Unit / Component Tests
▪ Injection (Input Validation)
▪ Broken Authentication
▪ Bypass Business Logic
▪ Error Handling & Logging
▪ Secure Architecture

“Static application security testing (SAST) is a set of technologies designed to analyze
application source code, byte code and binaries for coding and design conditions that are
indicative of security vulnerabilities. SAST solutions analyze an application from the
“inside out” in a nonrunning state.”

— Gartner IT Glossary

▪ In other words, the artifacts themselves are inspected (e. g. source code instead of
the program it represents)

▪ Presented SAST tools:
− Find Security Bugs (SpotBugs)
− SonarQube
− OWASP Dependency Check

Static Application Security Testing

13

https://www.gartner.com/it-glossary/static-application-security-testing-sast/

▪ A2:2017-Broken Authentication
▪ Attack Vectors

Attackers have access to hundreds of millions of valid username and
password combinations for credential stuffing, default administrative
account lists, automated brute force, and dictionary attack tools.

▪ How to Prevent
▪ Multi-factor authentication
▪ No default credentials
▪ Weak-password checks, such as testing new or changed passwords

against a list of the top 10000 worst passwords.
▪ Align password policies with NIST 800-63 B’s guidelines
▪ …

OWASP Top 10 (2017)

14

▪ V2.1 Password Security Requirements

− 2.1.1 Verify that user set passwords are at least 12 characters in
length

− 2.1.2 Verify that passwords 64 characters or longer are permitted
but may be no longer than 128 characters

− 2.1.3 Verify that password truncation is not performed

− 2.1.4 Verify that any printable Unicode character is permitted in
passwords

− 2.1.7 Verify that passwords are checked against a set of breached
passwords

V2: Authentication (ASVS)

15

▪ Testing for Weak Password Policy

1. What characters are permitted and forbidden for use within a
password? Is the user required to use characters from different
character sets?

2. Is the user prevented from using his username or other account
information (such as first or last name) in the password?

3. What are the minimum and maximum password lengths that can be
set?

4. Is it possible set common passwords such as Password1 or 123456?

4.4 Authentication Testing (Testing Guide)

16

Demo

Unit Test Layer

17

Service-Test Layer

18

DAST

API/Service Security
Tests

Security Unit &
Component Tests

SAST

The Security-Testing Pyramid: API/Service
Test Layer

19
Number of Tests

Feedback

Slow

Fast

Effort

High

Low

Explorative
Security Tests

▪ API / Service Tests
▪ Input Validation
▪ Authentication
▪ Authorization
▪ Session Management
▪ Output Escaping (XSS)
▪ Injection
▪ Security Misconfiguration

▪ V4.1 General Access Control Design

− 4.1.1 Verify that the application enforces access control rules on a
trusted service layer, especially if client-side access control is
present and could be bypassed

− 4.1.3 Verify that the principle of least privilege exists - users
should only be able to access functions, data files, URLs,
controllers, services, and other resources, for which they possess
specific authorization

− 4.1.5 Verify that access controls fail securely including when an
exception occurs.

V4: Access Control (ASVS)

20

▪ Testing for Bypassing Authorization Schema

1. Testing for Access to Administrative Functions

2. Testing for Access to Resources Assigned to a Different Role

▪ Testing for Role/Privilege Manipulation

− URL Traversal: Try to traverse the website and check if some of
pages that may miss the authorization check.

− WhiteBox: If the URL authorization check is only done by partial
URL match, then it’s likely testers or hackers may workaround the
authorization by URL encoding techniques.

4.5 Authorization Testing (Testing Guide)

21

Demo

Service Test Layer

22

DAST

API/Service Security
Tests

Security Unit / Component
Tests
SAST

The Security-Testing Pyramid: DAST

23
Number of Tests

Feedback

Slow

Fast

Effort

High

Low

Explorative
Security Tests

▪ Dynamic Application
Security Testing (DAST)

▪ OWASP Zap / StackHawk
▪ Portswigger Burp Suite
▪ SQLMap
▪ NMap
▪ ...

Dynamic Application Security Testing

24

$ docker pull owasp/zap2docker-stable
▪ Baseline Scan

− Runs the spider and passive scanning:
zap-baseline.py -t https://www.example.com

▪ API Scan

− Performs active scan against APIs defined by OpenAPI
zap-api-scan.py -t https://example.com/openapi.json -f openapi

▪ Full Scan
− Runs the ZAP spider and a full active scan (+ opt. ajax scan)

zap-full-scan.py -t https://www.example.com

https://www.zaproxy.org/docs/docker

https://www.zaproxy.org/docs/docker

Demo

Dynamic Security Testing

25

Automate all the Security Things!

26

DAST

API/Service Security
Tests

Security Unit &
Component Tests

SAST

Summary: The Security-Testing Pyramid

27
Number of Tests

Feedback

Slow

Fast

Effort

High

Low

Explorative
Security Tests

▪ Input Validation, Broken
Authentication, Secure Architecture,
Bypass Business Logic, Error
Handling & Logging

▪ Static Application
Security Testing (SAST)

▪ Input Validation, Authentication,
Authorization, Session Management,
Output Escaping (XSS), SQL
Injection, Security Misconfiguration

▪ Dynamic Application
Security Testing (DAST)

▪ Security Charters / Code Reviews /
Pen-Tests

Feedback: https://feedback.andrena.de/f/7gf75q7z

Thanky You. Any
Questions?

28

https://feedback.andrena.de/f/7gf75q7z

Novatec Consulting GmbH
Dieselstraße 18/1
D-70771 Leinfelden-Echterdingen

T. +49 711 22040-700
info@novatec-gmbh.de
www.novatec-gmbh.de

Thanks for your attention

29

