KUBERNETES IN A GROWN ENVIRONMENT
AND
INTEGRATION INTO CONTINUOUS DELIVERY

United Internet / 1&1 Mail & Media

/_unii?.ed}’
/internet

GMX

WEB.DE

[@oilcom

United Internet

Is a leading European internet specialist
> 9000 employees
90k servers in 10 data centers
Access
« DSL and Mobile
Applications
» Business (Server, Hosting)
« Consumer (WEB.DE etc.)

1&1 Mail & Media

Main brands GMX, WEB.DE and MAIL.COM

Various services around a free or paid mail account (calendar, news portal, cloud
storage)

33 million active users / month

Speakers

= Stephan Fudeus

Joined 1&1 in 2005

» Long-term experience in building highly scalable multi-tenant applications
= Product Owner and TechlLead for our Kubernetes Clusters

= Twitter: @der_sfu

= Dr. Sascha Muhlbach

» Expert Infrastructure Architect
= 15 years professional experience

» Responsible for the global operations strategy of the applications and
systems infrastructure

Motivation / Environment

Cluster-Design
Network-Setup / Ingress

Git-driven cluster operations
Multi-Tenancy

Build processes
Continuous delivery environment
Onboarding / Training

Motivation

= Why Container?
= Strong coupling between code and application runtime environment
= One build responsibility
= Hide core infrastructure from application
= Reproducibility in development
= Follow new standards in software development

= Requirements
= Reliable platform that provides the same level of availability that our existing environment is delivering
= Efficient deployment for geo-redundant services in multiple data centers
= Self-service for the development and application teams
= Multi-tenancy with strong separation for security reasons
= Must fit into the existing network environment
= Mostly automated operation of the base Kubernetes platform

Environment

= Qrganizational Environment
= Approx. 25 Dev Teams with 10 Ops Teams
» Strong organizational separation between PM / Dev / Ops
n 24/7
= Central Ops Team to build and run the Kubernetes platform

= Technical Environment
= 3 datacenters (2 in DE, 1 in US) that are owned by us
= bare metal and virtual machines (KVM, ESX)
= All servers are Puppet managed
» Our infrastructure has ~15.000 Puppet clients
= Majority of services are written in Java
= Ongoing transition to CD and microservices

Cluster Design

|:| Cluster 1 - Sandbox
. Cluster 2 - Live

Layer 3 routing

S

[l Cluster 3 - Non-Live

<

1 x 48 port 10GE switch
Layer 2 domain rack local
multiple (2-3) VLANs
(live / non-live)

WORKER : © WORKER 9 WORKER © B
WORKER ¢ O WORKER @ | | C T WORKER @
WORKER : ¢ WORKER WORKER © <
WORKER : ¢ WORKER : ¢ WORKER © Compute Nodes (XL)
WORKER : ¢ WORKER ; WORKER ©

\

WORKER) WORKER . . WORKER ©

Total: up to 25 servers
(limitations due to power
supply/heat generation)

... additional racks as required

(xeum) sxui 3901

MASTER © MASTER ©

<
<

MASTER © : ; : : MASTER © :
MASTER © ; K Y MASTER © : Management Nodes (M)

Placeholder 10 HE
for storage

Placeholder 10 HE
for storage

Placeholder 10 HE
for storage

Rack $19, Room R06 Rack S09, Room R06 Rack S08, Room R06

7 20.06.18 1&1 Mail & Media Development & Technology GmbH

Network Setup for Frontend Zone

= Integration of existing F5 BiglP load balancing platform with their features
= Service IPs are BGP-routed to Balancer and then forwarded with SNAT to NodePorts
= BGP enables global redundancy

= No public IPs inside Kubernetes cluster
Pool Member

N
J

10.8.0.1:30001
82.165.230.17:443 < >

10.8.0.2:30001

10.8.0.3:30001

ServiceType: NodePort
10.8.0.1:30001 10.8.0.2:1

A 4 A

10.8.0.3:30001

A

kube-proxy
Worker

Node m
_

Kubernetes API

8 20.06.18 1&1 Mail & Media Development & Technology GmbH

Network configuration via ConfigMap for F5

apiversion: vl
kind: ConfigMap
metadata:
labels:
app: prometheus
f5type: virtual-server
pipeline-managed: "true"
name: prometheus-ingress
namespace: monitoring

data:
schema: "f5schemadb://bigip-virtual-server_v@0.1.7.json"
data: |
{
"virtualServer": {
"backend": {

"serviceName": "prometheus",
"servicePort'": 9090

1,
"frontend": {
"partition": "k8s-be-qa-izl-bs",
"iapp": "/Common/K8S_iApp_010",
"iappPoolMemberTable": {
"name": "Pool_Definition__Pool_Members",
"columns": [
{"name": "Pool_Member_IP", “kind": "IPAddress"},
{"name": "Pool_Member_Port", "kind": "Port"}
|
},
"jappOptions": {
"description": "Prometheus monitoring for Kubernetes"
},

9 20.06.18 1&1 Mail & Media Development & Technology GmbH

"iappVariables": {
"Virtual_Definition__VS_Type": "{{ .Values.global.ingress.type }}",
"Virtual_Definition__VS_VLANs_Enabled": "{{ .Values.global.ingress.vlan }}",

"Virtual_Definition__VS_TCP_Client_Profile": "{{ .Values.global.ingress.tcp_client_profile }}",
"Virtual_Definition_ VS_HTTP_Profile": "{{ .Values.global.ingress.http_profile }}",
"Virtual_Definition__VS_SSL_Client_Profiles": "{{ .Values.global.ingress.ssl_client_profiles }}",
"Virtual_Definition__VS_Persistence": "{{ .Values.global.ingress.stickyness }}",
"Virtual_Definition__VS_SSL_Server_Profiles": "{{ .Values.global.ingress.ssl_server_profiles }}",
"Virtual_Definition_ VS_TCP_Server_Profile": "{{ .Values.global.ingress.tcp_server_profile }}",
"Virtual_Definition__VS_iRules": "{{ .Values.global.ingress.irules }}",
"Pool_Definition__Pool_Health_Monitors": "{{ .Values.global.ingress.healthmonitor }}",

"Virtual_Definition__VS_IP": "{{ .values.global.ingress.vip }}",

"Virtual_Definition_ VS_Port": "{{ .Values.global.ingress.port }}"

Network Setup for Backend Zone

= |n backend networks, we use MetalLB (no specific Layer 7 requirements)
= Service IPs are BGP-announced with ECMP distribution (easy scaling)
= LoadBalancing only with K8S base algorithms or ingress controller features

10.176.0.6:80

)
-

_ J

Worker Node kube-proxy

L
=

10 20.06.18 1&1 Mail & Media Development & Technology GmbH

Network configuration via Service for MetalLB

apiVersion: vl
kind: Service
metadata:
labels:
name: prometheus
name: prometheus
namespace: monitoring
spec:
clusterIP: 100.72.112.153

type: LoadBalancer

loadBalancerIP: 10.176.0.6

- name: prometheus
port: 80
protocol: TCP
targetPort: 9090

selector:

app: prometheus
sessionAffinity: ClientIP
sessionAffinityConfig:
clientIP:
timeoutSeconds: 10800

Git-driven cluster operations

= Maturity level via 3 branches (master, integration, production)

= All cluster operations are triggered based on Gitlab-CI pipelines
= automatically on git-pushes to relevant branch
= manually triggered jobs for cluster changes
= scheduled jobs for periodic changes (namespace updates / purges)

Git-driven operations use cases

Full redeployment of clusters
= Only if cluster is broken, will wipe everything
= Will redeploy all nodes in parallel

Rolling upgrade of clusters
= Usually done on a weekly basis
= Will wipe and reset nodes one by one

Namespaces update
= Nightly updates for production
= on-push for integration

Addon update

= Addons as helm charts, rendered via helm template and injected via kubectl apply
= Done ad-hoc for addon changes without redeployment

Run_zeus_to_cmdb

@ run_zeus_to_c...

Q

Render_code

@ make_terrafor...

@ pipeline_checks

@ render_names...

@ test_alertrule_r...

@ validate_addons

Q

Q

Q

Q

Q

Trigger_sync

@ trigger_sync_bap

@ trigger_sync_bs
@ trigger_sync_Ixa

@ trigger_sync_ga

Q

Q

Q

Q

Deploy

@ addons_be-pro...
@ addons_be-pro...
@ addons_be-pro...
@ addons_fe-pro...
@ addons_fe-pro...
@ addons_fe-pro...
@ addons_infra-p...
@ addons_infra-p...
@ addons_infra-p...
@ rolling_reboot._...
@ rolling_reboot_...
@ rolling_reboot_...
@ rolling_reboot_...

@ rolling_reboot_...

Multi Tenancy

= Common platform for several teams
= PodSecurityPolicies (no-root, no host-net, r/o layers)
» Dedicated resources for teams
* Dedicated in-cluster prometheus for scraping
» Configurable log-sink (Elasticsearch, Kafka)
= Authentication via OIDC <-> Dex <-> LDAP

= Maximum separation between teams targeted

= Namespaces are a ,managed" resource

= Resource constraints defined centrally per namespace

= Users are restricted to their namespaces via RBAC

= Network policies

» Team-centric ,helper’ namespace
« e.g. $team-helper
» Used for managed resources, e.g. team-prometheus

» |Individual namespaces per (group of) application and stage
« $team-$app-live, $team-$app-prelive

Multi Tenancy

» Dedicated namespaces for individuals
= Purpose: Training, PoC, Experiments
= Daily process to read users from LDAP and generate and flush namespaces
= Service exposure via central ingress controller (traefik)

Namespace-Config via yaml

.qa-ns: &ga-default-resources
cpu_total: 20
memory_total: 130Gi
max_pod_size: L

.dev-ns: &dev-default-resources
cpu_total: 10
memory_total: 65Gi
max_pod_size: S

team:
ams:
log_sink:
address: "kafkal, kafka2,kafka3"
type: "kafka"

prometheus_vip: "10.176.0.7"
app_namespaces:
ams-tooling-qa: *xga-default-resources
ams-testing-qa: xqa-default-resources
ams—-testing-dev: *dev-default-resources
admins:
- "ams-admins"
- "ams-users"
personal_namespaces:
- Ccn=ams-users
- cn=ams-admin
- cn=other-users
cluster_name: "sandbox-intg-iz2-bap"

mam_dc: "bap"
activate_network_policies: true

Rendered via helm

36 resulting manifests:

1 kind:
1 kind:
1 kind:
2 kind:
2 kind:
4 Kind:
4 Kind:
4 kind:
8 kind:
9 kind:

Deployment
Ingress

Service
ConfigMap
ServiceAccount
LimitRange
Namespace
ResourceQuota
NetworkPolicy
RoleBinding

Build Processes

» Fully automated builds

= High degree of standardization
= e.g. central maven POM

Artmory

» Parallel builds for classical and container deployments
= Containers use a centrally provided base image

= Build processes are triggered upon base image changes —
= Policy: updates / rebuilds are enforced every 4 weeks

Continuous Delivery Environment

GoCD maps business processes
Dedicated instance per team
Standardized pipeline templates

> 9

Technical processes are mapped separately
Ansible for host based deployments
Helm/Kubectl for k8s deloyments

Supports hybrid deployments
Container and Hosts in parallel
Hybrid usage via loadbalancer
Assists during transition phase

ANSIBLE

.

—

O

iy
HELM

A

5

Fully automated deployment chain

V

Artlfactory

>>90

i
—> HELM

ANSIBLE |
: E]
TIeE
111 ﬂ

<11 D:l

Onboarding & Training

= 4 training blocks for system administrators (1-2 days each)

Docker & Kubernetes

GoCD & Helm
* Pipeline Design
* Helm Templating

Development Techniques for Ops
* Repositories and versioning
» Secure Software Development Lifecycle

Operating Container Applications
« Monitoring, Logging and Failure Handling
» Operations Lifecycle

Links

= F5-Ctrl (https://github.com/FSNetworks/k8s-bigip-ctir)
» MetalLB (https://metallb.universe.tf/)

= Dex (https://github.com/coreos/dex)

= GoCD (https://www.gocd.orQg)

=« https://jobs.1und1.de/

= https://web.de

» https://www.gmx.net

= https://www.mail.com

» https://www.united-internet.de/

https://github.com/F5Networks/k8s-bigip-ctlr
https://metallb.universe.tf/
https://github.com/coreos/dex
https://www.gocd.org/
https://jobs.1und1.de/
https://jobs.1und1.de/
https://jobs.1und1.de/
https://www.web.de/
https://www.gmx.net/
https://www.mail.com/
https://www.united-internet.de/

