
Lost in transaction?

Über (In-)Konsistenz in
verteilten Systemen

Berlin, Germany

benjamin.hoffmann@camunda.com

Benjamin Hoffmann

Technical Consultant
Camunda

REST, SOAP,
Cloud, Saas,

Microservices, SCS,
FaaS, Serverless,

…

Distributed systems

Some
Service

Some
Service

Some
Service

Some
Service

Some
Service

Some
Service

Some
Service

Failure will happen.
Accept it!

But keep it local!
Be resilient.

Let‘s start with a simple example

Credit
CardPayment

REST

Live demo

https://github.com/flowing/flowing-retail/tree/master/rest

https://github.com/flowing/flowing-retail/tree/master/rest

Circuit
Breaker

Photo by CITYEDV, available under Creative Commons CC0 1.0 license.

https://pixabay.com/de/schutzschalter-fi-schalter-1167327/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Live demo

https://github.com/flowing/flowing-retail/tree/master/rest

https://github.com/flowing/flowing-retail/tree/master/rest

Fail fast
is important

Photo by Tookapic, available under Creative Commons CC0 1.0 license.

https://www.pexels.com/photo/flying-plane-travel-ua-21852/
https://creativecommons.org/publicdomain/zero/1.0/

„There was an error
while sending your

boarding pass“

Check-in

Web-UI

Me

Current situation

Check-in

Barcode
Generator

Web-UI

Me

Output
Mgmt

Current situation

Check-in

Barcode
Generator

Web-UI

Me

Output
Mgmt

Current situation – the bad part

Check-in

Barcode
Generator

Web-UI

Me

Output
Mgmt

Current situation – the bad part

Check-in

Barcode
Generator

Web-UI

Me

Output
Mgmt

Current situation – the bad part

Stateful
Retry

Fail fast
is important

Fail fast
is important

but not enough!

We are having some technical
difficulties and cannot present you

your boarding pass right away.

But we do actively retry ourselves, so
lean back, relax and we will send it

on time.

…I just made this up…

Check-in

Barcode
Generator

Web-UI

Me

Output
Mgmt

Possible situation – much better!

Check-in

Barcode
Generator

Web-UI

Me

Output
Mgmt

Possible situation – much better!

Stateful
Retry

Check-in

Barcode
Generator

Web-UI

Me

Output
Mgmt

Stateful
Retry

Possible situation – much better!

The failure
never leaves
this scope!

Persist thing
(Entity, Document, Actor, …)

State machine or
workflow engine

Typical
concerns

DIY = effort,
accidental
complexity

Complex, proprietary,
heavyweight, slow,

don‘t scale,
developer adverse

Scheduling, Versioning,
operating, visibility,
scalability, …

Handling
State

Workflow engines,
state machines

It is
relevant
in modern

architectures

CADENCE

Silicon valley
has recognized

Workflow engines,
state machines

CADENCE

There are

lightweight open source

options

Workflow engines,
state machines

CADENCE

also at scale
Workflow engines,
state machines

CADENCE

for todays demo

Workflow engines,
state machines

Live demo

https://github.com/flowing/flowing-retail/tree/master/rest

https://github.com/flowing/flowing-retail/tree/master/rest

Payment

Now you have a state machine!

Credit
CardREST

has to implement
Retry

Client

„The customer wants a synchronous response“

Check-in

Barcode
Generator

Web-UI

Me

Output
Mgmt

„Eh – no!“

createPayment

HTTP 200 OK

HTTP 202 ACCEPTED

Payment

A synchronous response is possible in the
happy case, otherwise it is switched to

asynchronous processing.

Live demo

https://github.com/flowing/flowing-retail/tree/master/rest

https://github.com/flowing/flowing-retail/tree/master/rest

Synchronous communication
is the crystal meth of

distributed programming

Todd Montgomery and Martin Thompson
in “How did we end up here” at GOTO Chicago 2015

Check-in

Barcode
Generator

Web-UI

Me

Output
Mgmt

Asynchronous communication

You need to
monitor
timeouts

Check-in

Barcode
Generator

Web-UI

Me

Output
Mgmt

Remember…

The failure
never leaves
this scope!

Workflow …

Easy to
handle time

BPMN
Business Process

Model and Notation

ISO Standard

has to implement
Retry,

Timeout

Client

Distributed
systems

It is impossible to
differentiate certain

failure scenarios.

Independent of
communication style!

Service
Provider

Client

Payment

What does it mean?

Credit
CardREST

Duplicates
Duplicates

857621972_ded037d1db_b.jpg

Photo by oz dean, available under Creative Commons BY 2.0 license.

https://www.flickr.com/photos/forcefeed_swede/857621972
https://creativecommons.org/licenses/by/2.0/

has to implement
Retry,

Timeout

has to implement
Idempotency

Client Service Provider

We are processing your payment.
Do not leave this page.

And for god‘s sake – do not
reload!

Idempotency
is a business
problem!

We are processing your payment.
Do not leave this page.

And for god sake – do not reload!

Idempotency
is a business
problem!

We are currently processing your request.
Don‘t worry, it will happen safely –

even if you loose connection.
Feel free to reload this page at any time!

But we wanted to
talk about consistency!

Distributed
systems 2007

Distributed systems introduce complexity you have to tackle!

Credit
CardPayment

REST

Distributed systems introduce complexity you have to tackle!

Credit
CardPayment

REST

Do it reliably

Distributed transactions using compensation *

Compensation

*aka Saga pattern

Live demo

https://github.com/flowing/flowing-retail/tree/master/rest

https://github.com/flowing/flowing-retail/tree/master/rest

begin commit

{local TX}

Customer Credit Service
begin commit

{local TX}

Customer Credit Service
begin commit

{local TX}

Credit Card Service

Saga
Coordinator

A workflow engine can serve as Saga coordinator

Eventual consistency
Temporarily

inconsistent state

But only
temporary

No Isolation
(as in ACID)

Apologize!

https://blogs.msdn.microsoft.com/pathelland/2007/05/15/memories-guesses-and-apologies/

https://blogs.msdn.microsoft.com/pathelland/2007/05/15/memories-guesses-and-apologies/

has to implement
Timeout, Retry,
Compensation

has to offer
Compensation

has to implement
Idempotency

Client Service Provider

And: don‘t forget to apologize sometimes…

A few words
about architecture ...

Architecture

https://blog.bernd-ruecker.com/architecture-options-to-run-a-workflow-engine-6c2419902d91

https://blog.bernd-ruecker.com/architecture-options-to-run-a-workflow-engine-6c2419902d91

Workflows live inside service boundaries

Architecture

https://blog.bernd-ruecker.com/architecture-options-to-run-a-workflow-engine-6c2419902d91

https://blog.bernd-ruecker.com/architecture-options-to-run-a-workflow-engine-6c2419902d91

Architecture

https://blog.bernd-ruecker.com/architecture-options-to-run-a-workflow-engine-6c2419902d91

https://blog.bernd-ruecker.com/architecture-options-to-run-a-workflow-engine-6c2419902d91

Architecture

https://blog.bernd-ruecker.com/architecture-options-to-run-a-workflow-engine-6c2419902d91

https://blog.bernd-ruecker.com/architecture-options-to-run-a-workflow-engine-6c2419902d91

Event-driven example also available

InventoryPaymentOrder ShippingCheckout Monitor

https://github.com/flowing/flowing-retail/

Human
Tasks

H2 H2

https://github.com/flowing/flowing-retail/

Architecture

Das
Bildele
ment
mit der
Beziehu
ngs-ID
rId3
wurde
in der
Datei
nicht
gefunde
n.

https://blog.bernd-ruecker.com/architecture-options-to-run-a-workflow-engine-6c2419902d91

https://blog.bernd-ruecker.com/architecture-options-to-run-a-workflow-engine-6c2419902d91

Who uses a message bus?

Who has no problems
operating a message bus?

Dead messages | No context | Inaccesible payload | Hard to redeliver |
Home-grown message hospitals | …

Architecture

https://blog.bernd-ruecker.com/architecture-options-to-run-a-workflow-engine-6c2419902d91

Das
Bildele
ment
mit der
Beziehu
ngs-ID
rId5
wurde
in der
Datei
nicht
gefunde
n.

https://blog.bernd-ruecker.com/architecture-options-to-run-a-workflow-engine-6c2419902d91

Architecture

https://blog.bernd-ruecker.com/architecture-options-to-run-a-workflow-engine-6c2419902d91

Das
Bildele
ment
mit der
Beziehu
ngs-ID
rId5
wurde
in der
Datei
nicht
gefunde
n.

https://blog.bernd-ruecker.com/architecture-options-to-run-a-workflow-engine-6c2419902d91

Live demo

https://github.com/flowing/flowing-retail/tree/master/rest

https://github.com/flowing/flowing-retail/tree/master/rest

Before mapping processes
explicitly with BPMN, the truth was
buried in the code and nobody
knew what was going on.

Jimmy Floyd, 24 Hour Fitness

„

Reality check

https://thenewstack.io/5-workflow-automation-use-cases-you-might-not-have-considered/

https://thenewstack.io/5-workflow-automation-use-cases-you-might-not-have-considered/

<= milliseconds seconds minutes, weeks, …

Business

IT

Business processes
automation

Distributed
Transactions

Orchestration
Communication in
distributed systems

long runningalways short running short running, but
potentially long running

Use cases for workflow automation

Be aware of complexity of distributed systems
Know strategies and tools to handle it
e.g. Circuit breaker (Hystrix)

Workflow engine for stateful retry, waiting, timeout
and compensation (Camunda)

Thank you!

