
Asynchronous Programming -
Done right

ZWEI14.

ZWEI14 - A DIGITAL AGENCY WITH
CREATIVE DNA.
 
Idea, concept, design, technology and engage in perfectly together.

We are young but experienced, creative but down to earth, quickly but
meticulously, budget-conscious but sophisticated, focused but versatile.

Innovation first. In every project.

Overview

• In this session: It is all about asynchrony
• Non-blocking user interfaces (UIs)
• Maintainable source code
• JavaScript as used language for demonstration 

• What we will cover:
• Why should you think about asynchrony
• Challenges of asynchronism
• Proofed solution how to address these challenges  

• What we will not cover:
• New features of ES6 or ES7 (async, await, yield, function*)

Why asynchrony?

• Asynchrony
• „[…] occurrence of events independently of the main

program flow and ways to deal with such events.“ [Alex,
2012]  

• Separation of processes from main thread (Non-blocking)
• Communication between client and server
• Complex business workflows that have to be triggered 

• Goal: The main thread should not be blocked

Asynchrony is (difficult)
• Keep application state in sync

• Variables keep state of the asynchronous process
• Error handling

• Even more states have to be introduced
• Race conditions

• Changing the state before another process was finished
• Memory leaks

• Can be difficult to fix

But…

… the evolution goes further

Let’s use our toolbox

Composite

Abstract Factory

Strategy

Prototype

Singleton Decorator

Visitor

Observer

Factory Method

Facade…Iterator

What have these in common?

Composite

Abstract Factory

Strategy

Prototype

Singleton
Decorator

Visitor

Observer

Factory Method

Facade…Iterator

Let us ask the GoF…

Events
• An Event…

• „[…] is an event is an action or occurrence recognised by
software that may be handled by the software“

• „[…] can be generated or triggered by the system, by the
user or in other ways“ 

• But, events are (simply) collections that are filled over time

const events = [{val: 1}, {val: 3},  
 {val: 5}]

Excerpt: Collections in JS

events.forEach(x => console.log(x.val))

events.map(x => return x.val - 1)

events.filter(x => return x.val > 2)

events.concatAll()

ForEach

Map

Filter

ConcatAll

events.concat(events)Concat

events.reduce((x,y) => return x + y), 0)Reduce

ES6 Syntax

Amount of ordered items
1 const amountOfOrderedItems = user => {
2 user.getOrderedItems.
3 map(orderItems => {
4 orderItems.
5 filter(item => date > 02032016)}).
6 concatAll().
7 reduce((previous, next) => {
8 return previous.amount + next.amount
9 }, 0)
10 }
11
12 console.log(amountOrderedItems(user))

ES6 Syntax

Observable
• New collection type as part of ReactiveX

• Collection items over time
 

• Offers array functions to work with this new type
• filter, map, reduce, concatAll

• Can be used for animations, events or requests
• Ported to several languages

• Java, C, C#, JavaScript, Clojure, Swift, Scala,…
• https://github.com/ReactiveX

const eventsOverTime = [{val: 1}, {val: 3}, val: 5},…]

Observable
1 // Create an observable
2 const $input = $('#searchInput')
3 const searchInput = Rx.Observable.fromEvent($input,'keyUp')

10 // Unsubscribe
11 subscription.dispose()

4 // Subscribe and do something with the events
5 const subscription = searchInput.forEach(
6 event => sendRequest(event)
7 error => handleError(event)
8 () => console.log('done')
9)

What about race conditions?

• Processed in order that we want to processed

A

B C

D

A B D C

1)

2)

3)

time

What about race conditions?

• Processed in order that we want to processed

A

B C

D

A B DC

1)

2)

3)

time

concatAll()

Only possible by knowing when its done!!!

Unsubscribe

subscription.dispose()

• Manually unsubscribe when you do not need the event stream

• But, what happened if I forget to unsubscribe?
• You are listening on the event stream
• Consumes events that you do not need anymore
• Can causes incorrect application state

• How can I can automatize the unsubscription?
• Use another event stream that triggers the unsubscription
• takeUntil(event)

!!
Mem

ory
 Le

ak
 !!

Sum up

• Keep application state in sync
• No additional variable necessary

• Error handling
• Observables offers direct error handling

• Race conditions
• Synchronized asynchronous processes

• Memory leaks
• Unsubscribe only when condition is fulfilled

But the most important point is: It works in a great scale!

Any questions?

Thanks for your attention

