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Overview

e [n this session: It is all about asynchrony
« Non-blocking user interfaces (Uls)
e Maintainable source code
o JavaScript as used language for demonstration

 What we will cover:
 Why should you think about asynchrony
e Challenges of asynchronism
e Proofed solution how to address these challenges

 What we will not cover:
 New features of ES6 or ES7 (async, await, yield, function™)



Why asynchrony?

e Asynchrony

e ,[...] occurrence of events independently of the main

program flow and ways to deal with such events.” [Alex,
2012]

e Separation of processes from main thread (Non-blocking)
« Communication between client and server

 Complex business workflows that have to be triggered

e Goal: The main thread should not be blocked



Asynchrony is (difficult)

e Keep application state in sync
e Variables keep state of the asynchronous process
e Error handling
 Even more states have to be introduced
e Race conditions
e Changing the state before another process was finished
« Memory leaks
o Can be difficult to fix
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... the evolution goes further




Let’s use our toolbox

Composite

Abstract Factory

Singleton

lterator

Strategy

Prototype

Decorator
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Visitor

Observer

Factory Method

Facade
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What have these in common?

Visitor
Composite
Strategy
Observer
Abstract Factory
Prototype
Factory Method
Singleton
Decorator

lterator Facade



Let us ask the GoF...
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Events

e An Event...

o ,L...JIsan eventis an action or occurrence recognised by
software that may be handled by the software”

 [...]can be generated or triggered by the system, by the
user or in other ways”

o But, events are (simply) collections that are filled over time

const events = [ {val: 1}, {val: 3},

ST



Excerpt: Collections in JS

events.forEach(x => console.log(x.val))
events.map(x => return x.val - 1)
events.filter(x => return x.val > 2)
events.reduce((Xx,y) => return x + y), 0)
events.concatAll ()

events.concat (events)



Amount of ordered items

1 const amountOfOrderedItems = user => {
2 user.getOrderedItems.

3 map(orderItems => {

4 orderItems.

5 filter(item => date > 02032016)}).

6 concatAll().

7 reduce((previous, next) => {

8 return previous.amount + next.amount
9 }, 0)

10 }

11

12 console.log(amountOrderedItems (user))
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 New collection type as part of ReactiveX
e Collection items over time

const eventsOverTime = [{val: 1}, {val: 3}, val: 5},...]

o Offers array functions to work with this new type
o filter, map, reduce, concatAll

o Can be used for animations, events or requests

e Ported to several languages
o Java, C, C#, JavaScript, Clojure, Swift, Scala,...

e https://github.com/ReactiveX
(I } ReactiveX
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1 // Create an observable
2 const S$input = $('#searchInput')
3 const searchInput = Rx.Observable.fromEvent ($Sinput, 'keyUp')

// Subscribe and do something with the events
const subscription = searchInput.forEach(
event => sendRequest(event)

() => console.log('done’)

)

10 // Unsubscribe
11 subscription.dispose()
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What about race conditions?

e Processed in order that we want to processed

» time
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What about race conditions?

e Processed in order that we want to processed

1) A
2) B C
3) D
» time
A B C D

Only possible by knowing when its done!!! ‘ 2 ReaCtivex



Unsubscribe

 Manually unsubscribe when you do not need the event stream

subscription.dispose ()

e But, what happened if | forget to unsubscribe? fS“\\"
e You are listening on the event stream W
O
» Consumes events that you do not need anymore &L
e Can causes incorrect application state \\,Q

 How can | can automatize the unsubscription?
e Use another event stream that triggers the unsubscription

* takeUntil(event)
(I } ReactiveX
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e Keep application state in sync

 No additional variable necessary

Error handling

* Observables offers direct error handling
Race conditions

e Synchronized asynchronous processes
Memory leaks

e Unsubscribe only when condition is fulfilled

AN N NN

But the most important point is: It works In a great scale!
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Any questions?
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Thanks for your attention




