Asynchronous Programming -

Done right

ZWEI14.

ZWEI14 - A DIGITAL AGENCY WITH
CREATIVE DNA.

|dea, concept, design, technology and engage in perfectly together.

We are young but experienced, creative but down to earth, quickly but
meticulously, budget-conscious but sophisticated, focused but versatile.

Innovation first. In every project.

(A Das Ortliche

Mercedes-Benz

Overview

e [n this session: It is all about asynchrony
« Non-blocking user interfaces (Uls)
e Maintainable source code
o JavaScript as used language for demonstration

 What we will cover:
 Why should you think about asynchrony
e Challenges of asynchronism
e Proofed solution how to address these challenges

 What we will not cover:
 New features of ES6 or ES7 (async, await, yield, function™)

Why asynchrony?

e Asynchrony

e ,[...] occurrence of events independently of the main

program flow and ways to deal with such events.” [Alex,
2012]

e Separation of processes from main thread (Non-blocking)
« Communication between client and server

 Complex business workflows that have to be triggered

e Goal: The main thread should not be blocked

Asynchrony is (difficult)

e Keep application state in sync
e Variables keep state of the asynchronous process
e Error handling
 Even more states have to be introduced
e Race conditions
e Changing the state before another process was finished
« Memory leaks
o Can be difficult to fix

ZWEI 14

(554 %

... the evolution goes further

Let’s use our toolbox

Composite

Abstract Factory

Singleton

lterator

Strategy

Prototype

Decorator

ZWEI 14

Visitor

Observer

Factory Method

Facade

ZWEI 14

What have these in common?

Visitor
Composite
Strategy
Observer
Abstract Factory
Prototype
Factory Method
Singleton
Decorator

lterator Facade

Let us ask the GoF...

of lieration
Builder j \ \
Iterator avoiding Bridge
creating - hysteresis

compos.tes

\ enumerating
childran .
adding composed
responsibilities using Command
fo objects
Decorator f:g;anrz:)gsﬂes delin:'ng
i defining
adding traversals :
operations the chain
defining
grammar
changing skin
versus guts
adding
sharing Interpreter operations | Chain of Responsibilm
sharing

terminal

strategies
Strategy sharin, symbols
statesg Mediator
comple;é
depenfency

algorithm's

steps
¥—| Template Method }__————’ often uses\

configure factory
dynamically implement using

\

/{ Abstract Factory

single

single
instance
Singleton

Figure 1.1: Design pattern relationships

Factory Method—|

Events

e An Event...

o ,L...JIsan eventis an action or occurrence recognised by
software that may be handled by the software”

 [...]can be generated or triggered by the system, by the
user or in other ways”

o But, events are (simply) collections that are filled over time

const events = [{val: 1}, {val: 3},

ST

Excerpt: Collections in JS

events.forEach(x => console.log(x.val))
events.map(x => return x.val - 1)
events.filter(x => return x.val > 2)
events.reduce((Xx,y) => return x + y), 0)
events.concatAll ()

events.concat (events)

Amount of ordered items

1 const amountOfOrderedItems = user => {
2 user.getOrderedItems.

3 map(orderItems => {

4 orderItems.

5 filter(item => date > 02032016)}).

6 concatAll().

7 reduce((previous, next) => {

8 return previous.amount + next.amount
9 }, 0)

10 }

11

12 console.log(amountOrderedItems (user))

Observable ZWEI14

 New collection type as part of ReactiveX
e Collection items over time

const eventsOverTime = [{val: 1}, {val: 3}, val: 5},...]

o Offers array functions to work with this new type
o filter, map, reduce, concatAll

o Can be used for animations, events or requests

e Ported to several languages
o Java, C, C#, JavaScript, Clojure, Swift, Scala,...

e https://github.com/ReactiveX
(I } ReactiveX

Observable ZWEI14

1 // Create an observable
2 const S$input = $('#searchInput')
3 const searchInput = Rx.Observable.fromEvent ($Sinput, 'keyUp')

// Subscribe and do something with the events
const subscription = searchInput.forEach(
event => sendRequest(event)

() => console.log('done’)

)

10 // Unsubscribe
11 subscription.dispose()

O 00 N & U B

What about race conditions?

e Processed in order that we want to processed

» time

ZWEI 14

What about race conditions?

e Processed in order that we want to processed

1) A
2) B C
3) D
» time
A B C D

Only possible by knowing when its done!!! ‘ 2 ReaCtivex

Unsubscribe

 Manually unsubscribe when you do not need the event stream

subscription.dispose ()

e But, what happened if | forget to unsubscribe? fS“\\"
e You are listening on the event stream W
O
» Consumes events that you do not need anymore &L
e Can causes incorrect application state \\,Q

 How can | can automatize the unsubscription?
e Use another event stream that triggers the unsubscription

* takeUntil(event)
(I } ReactiveX

Sum up ZWEI 14

e Keep application state in sync

 No additional variable necessary

Error handling

* Observables offers direct error handling
Race conditions

e Synchronized asynchronous processes
Memory leaks

e Unsubscribe only when condition is fulfilled

AN N NN

But the most important point is: It works In a great scale!

ZWEI 14

Any questions?

ZWEI 14

Thanks for your attention

