
Combinatorial Test Design
Entwicklertag 2014, Karlsruhe

Juergen Heymann, SAP AG, May 2014

© 2014 SAP AG. All rights reserved. 2

The Problem of Testing

© 2014 SAP AG. All rights reserved. 3

What is "Combinatorial Test Design"?

 A 'black box' test technique

 (= views function of software from the outside)

 that combines several test design techniques

 to deal well with the problem of 'all combinations'

© 2014 SAP AG. All rights reserved. 4

Outline

A. Introduction to the Method

B. Examples from Application Modeling & Testing

C. Is it worth it?

Introduction to the Method

© 2014 SAP AG. All rights reserved. 6

Step 1: Finding the Use Cases / Test Cases

 Ask "What can I do here?" ('user action')

 Each action triggers a behavior / function
– 'Enter' / action-buttons but also menu items,

tool bar clicks, …

– API: call of a service / function / method / …

 Each action / 'use case' becomes a test

case

p1,p2,p3

What can I do here?

p4

F8

menu1

tool3

Assume you have a certain scope of functionality to test…

Step 1. Find 'use cases' / test cases (UI example)

This should give you a complete list of possible actions / test cases that

cover the test object – and have to be tested (test = setup-action-verify)

© 2014 SAP AG. All rights reserved. 7

Step 2: Find the parameters of the test / action

Differentiate between

 Dummy Data: just needed to run tests, not varied

in testing, e.g. customer address, article name

 Test Model Relevant Parameters: affect the

behavior of code under test (CUT)

Test Relevant Parameters can be found in

 Direct Input e.g. parameters in API, on screen

 Application Configuration

 Object Data in DB

Step 2. Find parameters of the test case

Find parameters

Exec

This gives you the set of parameters that are relevant for this test case

© 2014 SAP AG. All rights reserved. 8

Parameter Oriented Test Design

These 4 test design methods helps us to cover the parameter

space in a smart way to find more defects with less effort!

The methods focus on functional correctness.

© 2014 SAP AG. All rights reserved. 9

1: Identify Equivalence Classes
Example: Insurance Handling

© 2014 SAP AG. All rights reserved. 10

2: Analyze Boundary Values
… to be considered in edge cases

© 2014 SAP AG. All rights reserved. 11

Handling Multiple Parameters

© 2014 SAP AG. All rights reserved. 12

3: Decision Tables – for small models
Example: Account Opening

Approach (again): Find the parameters and the values

Specification: Successful opening of an account requires that the applicant identifies

himself through an identity card. Minors also require consent of their parents.

When an account is opened, an overdraft limit can be granted. The preconditions for

this are that the credit check is successful and that the applicant is legally an adult.

© 2014 SAP AG. All rights reserved. 13

But many tests have more than 4 parameters …

Let’s focus on a method that supports this case very well …

© 2014 SAP AG. All rights reserved. 14

4: All-Pairs Testing – The Foundation

© 2014 SAP AG. All rights reserved. 15

All-Pairs Testing – the Key Concept

© 2014 SAP AG. All rights reserved. 16

An All-Pairs Example

© 2014 SAP AG. All rights reserved. 17

All-Pairs Tool Support

You cannot generate 'minimal pair coverage' by hand!

 We use the PICT engine from Microsoft + XLS as wrapper for convenience

Example
with

Demo

Examples

© 2014 SAP AG. All rights reserved. 19

Example 1: Retail Pricing
Retail Management System – Sales Pricing

All these fields are irrelevant

for model ( 'other test data')

Single field errors need to be

tested, e.g. date in the future etc.

BUT: Error checks are outside

of All-Pairs model scope

First set of relevant parameters:

MMCriteria: Unique, Match, Any

CompleteMM: 0,1

ProratedMM: 0,1

AllowRetMM: 0,1

© 2014 SAP AG. All rights reserved. 20

Combining all techniques 2

EligibilityRule1: ItemKeyExisting, NoDiscountsToAll, AllItems, Cosmetics, VenderSelection, UnitChargeDiscount

Operation1: Greater|GreaterEQ, EQ, LessEQ|Less

aliasing : we consider Greater|GreaterEQ 'almost the same' / equivalent; they are iterated but generate no addtl. pair coverage

Qty : 2

Qty: states how many items of the same type (item key) need to be bought before the special price / … applies.

Qty=2 covers the case that the program identifies at least 2 separate items to belong to the 'special' (as 'condition items').

You need the proper test data to 'trigger' this quantity

Discount1: DollarOff, PctOff, SellPrice

Amount: ignored for model, just use any test data; error checks: amount off > price, pct off > 100, Sell price > orig price

ApplyTo1: Item, Group

constraint: LowestPriceItem only used with EligibilityRules; item/group only with item

LowestPriceItems1: 0,1

count semantics?

Count1: 0, 1, 10

ItemKey: must exist, but is

single-field error condition

 ignore in model

© 2014 SAP AG. All rights reserved. 21

Example 2: FINDSTR (Windows Cmd tool)

© 2014 SAP AG. All rights reserved. 22

Example 3: Code Level (C++)

Generated test cases  generated test code

parameters and values

cases table

case interpreter

(incl. check code)

Is it worth it?

© 2014 SAP AG. All rights reserved. 24

Is it worth it?

Results from 10 applications

 Average of 4x less find-cost-per-defect

('best case' was 10x)

 Modeling effort 1-2 hours per model

Results from Code Example

 500x less test cases than 'brute force'

(=all combinations)

 100x faster

 99.6% code coverage (line)

Thank you

Contact information:

Juergen Heymann

juergen.heymann@sap.com

Resources:

 Youtube: youtube.com/user/agilese

 channel 'Combinatorial test design'

 Tools: https://scn.sap.com/docs/DOC-48472

 www.pairwise.org

meet the SPEAKER
@speakerlounge

1. OG DIREKT ÜBER DEM
EMPFANG

